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Ⅰ. Introduction

The segmentation of cell nuclei is a crucial step

in the analysis of biomedical microscopy images[1].

It serves as the foundation for various medical

analyses like cell counting[2] and cell type

classification[3]. However, this task is quite

challenging due to variations in staining, tissue

types, and the diverse visual characteristics of

different cell types, all of which affect how nuclei

appear[1]. Manual segmentation of nuclei is not only

time-consuming but also becomes impractical when

dealing with large datasets. Furthermore, the

accuracy of segmentation results relies heavily on

the expertise of individuals and is often not

reproducible. Consequently, there is a significant

demand for automated methods for instance-based

nuclei segmentation in microscopy images.

In the literature, various techniques have been

proposed for automating the segmentation of nuclei,

spanning from basic background subtraction to more

advanced methods. These include approaches like

the Otsu-based method[4], the watershed method[5],

Grab Cut[6], and active contour[7]. However, these

conventional methods have their limitations. They

are often sensitive to the choice of parameters, and

their effectiveness is typically limited to specific

categories of structured nuclei.

In contrast, deep learning-based techniques have

gained significant traction in the field of medical

imaging, being applied to various applications such

as medical image super-resolution[8], classification[9],

and notably, medical imaging segmentation[10,11].

These approaches have also been extensively utilized

for cell and nuclei segmentation, with numerous

deep learning-based methods dedicated to this

task[12]. For instance, Pan et al. introduced a deep

semantic network designed for nuclei segmentation

in pathological images[13]. Vuola et al. employed

MaskRCNN to segment nuclei[14]. Van et al.
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presented DeepCell, a method tailored for analyzing

cells in live-cell imaging[15]. Ronneberger et al.

proposed the U-Net model, which has become a

popular choice for nuclei segmentation[16]. Zeng et

al. developed a modified version of U-Net for nuclei

segmentation, incorporating features like residual

blocks and channel attention mechanisms[17]. Zhou et

al. introduced CIA-Net, which utilizes two separate

decoders for distinct tasks and incorporates a

multilevel information aggregation module to

capture dependencies between nuclei and their

contours[18].

In the current study, we conduct a feasibility

study on deep learning-based approaches for nuclei

images convolution Network (FCN)[19], SegNet[20],

UNet[16], DoubleUNet[21]. We demonstrate the utility

of such models by evaluating them for cell

segmentation and recommend which one is most

suitable for nuclei segmentation tasks.

The paper is organized as follows: in Section II,

we review several deep learning models for image

segmentation. Section III presents the comparative

results when apply deep learning reviewed in

Section II. Conclusions of this paper are given in

Section IV.

Ⅱ. Materials and Methods

2.1 Fully Convolutional Neural Network
Long et al. introduced the Fully Convolutional

Neural Network (FCN) for addressing semantic

image segmentation challenges[22]. This architecture

has since been extended to tackle various other

segmentation tasks, including ventricle

segmentation[19]. As presented in Fig.1, the network

includes 15 convolution layers, 3 max pooling

layers, followed by upsampling layers and a

classifier layer.

The network is divided into two main parts,

contracting path (also called encoder) and expanding

path (called decoder). The encoder consists of

convolutional layers used to preserve the spatial

structure of the feature map and max pooling layers

to reduce the resolution. In the improved version of

FCN by Tran[19] each convolution layer is followed

by a rectified linear unit (ReLU) and a

mean-variance normalization (MVN). The purpose

of MVN is to normalize the intensity distribution of

the feature map so that the feature map pixel values

have zero mean and unit variance. The decoder,

symmetric to the encoder, consists of transposed

convolution layers, and upsampling layers. The

feature map in the decoder is combined with the

corresponding feature map in the encoder to

preserve spatial information that might be lost

during pooling operations. Finally, a classifier such

as softmax is used to produce class probabilities for

each pixel in the image to be segmented.

2.2 SegNet
The SegNet architecture was proposed by

Badrinarayanan et al.[20] for semantic pixel-wise

segmentation. Similar to the FCN architecture, the

Fig. 1. FCN architecture
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SegNet consists of an encoder path account for

downsampling with convolution and max-pooling

layers, and a decoder path used for upsampling the

feature maps to the same size of the input image. To

retain information lost due to pooling, Ninh et al.[23],

proposed the skip connection mechanism to fuse

between the encoder to decoder of the SegNet. In

addition, compared to the original SegNet model,

their model has also fewer learned parameters since

the downsampling and upsampling layers are

reduced. The improved version of the SegNet

architecture is presented in Fig. 2.

2.3 U-Net
The U-Net neural network architecture,

introduced by Ronneberger and colleagues in

reference[16], has become widely recognized as the

standard approach for medical image segmentation

tasks. It draws inspiration from the Fully

Convolutional Network (FCN)[19] and can be

conceptually divided into two main sections: the

contracting part (encoder) and the expanding part

(decoder). The contracting part employs a

combination of convolutional layers and

max-pooling operations to achieve downsampling,

while the expanding part involves upsampling and

convolutional layers. To preserve crucial spatial

information that might be lost during downsampling,

U-Net employs skip connections, where feature

Fig. 2. SegNet architecture

Fig. 3. U-Net architecture
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maps from the encoder are concatenated with their

counterparts in the decoder at the same spatial

resolution. This architectural design facilitates

accurate segmentation of medical images.

2.4 DoubleU-Net
The DoubleU-Net has recently been proposed by

Jha et al.[21] shown in Fig 4. As can be seen from

this figure, DoubleU-Net starts with an VGG-19

pre-trained network as an encoder in the first

sub-network, and then follows by an astrous spatial

pyramid pooling (ASPP) block and finally is the

decoder. The input image is passed through the first

sub-network, then the first output is created. This

output then multiplies with the input, the result

becomes the input of the second sub-network and

the second output is created. Finally, these two

outputs are concatenated and become the output of

DoubleU-Net. What makes DoubleU-Net differ from

U-Net is that there are two subnetworks.

Squeeze-and-Excitation block is used inside to

enhance the power of convolution layer. Moreover,

the skip connection is performed from the first

encoder to the first decoder and from either the first

encoder or the second encoder to the second

decoder, which maintains the spatial resolution and

enhances the quality of the output feature maps.

Fig. 4. DoubleU-Net architecture

2.5 Loss function
For deep learning-based nuclei image

segmentation, the binary cross-entropy function and

Dice loss are widely used to train the networks. Let

y be the predicted map by the network, ŷ be the

corresponding label map, and N be the number of

pixels of the maps. The Binary Cross Entropy loss

is express as:

(1)

The Dice loss is computed as

(2)

In our paper, we evaluate a loss function which

is conjunction between the Binary Cross Entropy

loss and Dice loss. While Dice loss captures the

result between pixel overlap, BCE loss is associated

with models that output probabilities. The

combination of these two loss functions will help the

optimization process become more general and

converge better. Our loss function is express as

(3)

Ⅲ. Experimental Results

3.1 Datasets
The Data Science Bowl 2018 (DSB2018) dataset

presented a global challenge to scientists, tasking

them with the automatic identification and

segmentation of cells within a collection of

microscopic images. The primary objective was to

develop image segmentation techniques that could

be universally applied across multiple experiments

without the need for additional human intervention.

This approach aimed to decrease the time required

for image quantification, enabling future researchers

to readily apply and evaluate various experiments

for both research and clinical purposes.

The Data Science Bowl 2018 (DSB2018) dataset

comprises a total of 670 training pairs and 65 testing
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pairs. Each pair consists of an image and its

corresponding masks. Notably, the DSB2018 dataset

encompasses five distinct types of cell images,

including Small Fluorescent, Purple Tissue, Pink and

Purple Tissue, Large Fluorescent, and Grayscale

Tissue. These images exhibit variations in their

content and characteristics, making the dataset

diverse and challenging to work with, as depicted in

Fig 5.

The distribution of data of nucleus types of the

train and test sets of the DSB2018 dataset are given

in Fig. 6.

3.2 Training
We implemented our model and utilized the

Adam algorithm for optimizing the trainable

parameters of the model with original learning rate

. The training process is looped on the

dataset for 200 epochs with batch size 16 and the

data is augmented after every epoch. Early stopping

and Reducelronplateau have already been used.

3.3 Evaluation metrics
We use Dice Similarity Coefficient (DSC) to

evaluate the segmentation performance by the neural

network. The DSC metric is defined as

(4)

where TP, FN, FP represent for True Positive, False

Negative and False Positive, respectively.

In addition to DSC, we also use the Intersection

over Union (IoU) index as an alternative evaluation

measure, defined as

(5)

where TP, FN, FP represent for True Positive, False

Negative and False Positive, respectively.

3.4 Results and validation
In this research paper, we undertake an

investigation into the practicality of employing deep

learning-based methods for the segmentation of

nucleus images. Our focus is on evaluating the

performance of various cutting-edge deep learning

models on the Data Science Bowl 2018 (DSB2018)

Fig. 5. Five types of nuclei images in Data Science Bowl 2018 dataset

Fig. 6. Distribution of the dataset for training and testing.
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dataset. The models we assess encompass the FCN,

SegNet, U-Net, and DoubleU-Net architectures. To

quantitatively assess their segmentation results, we

present a comprehensive evaluation in Tab 1, which

includes metrics like the Dice Similarity Coefficient

(DSC) and Intersection over Union (IoU).

As depicted in Table 1, it becomes evident that

the DoubleU-Net model outshines its counterparts,

achieving the highest DSC and IoU scores. In

comparison to its predecessor model, U-Net,

DoubleU-Net demonstrates remarkable

improvements, surpassing it by 1.8% in DSC and

2.5% in IoU. Moreover, DoubleU-Net also exhibits

substantial advancements in Recall and Precision

scores, surpassing U-Net by 7.9% and 2.3%,

respectively.

Furthermore, when pitted against the FCN and

SegNet models, DoubleU-Net exhibits superior

performance in terms of DSC, IoU, and Precision.

These findings position DoubleU-Net as the standout

model, delivering the best overall performance

among all the state-of-the-art methods we evaluated

for nucleus image segmentation.

However, the pursuit of higher performance

inevitably introduces greater complexity into the

model. In the case of DoubleU-Net, it comprises

two pairs of encoder-decoder structures, and each of

these encoder-decoder pairs is essentially a U-Net

model. While this complexity is instrumental in

achieving the impressive segmentation results

mentioned earlier, it does come with the trade-off of

reduced computational efficiency. In contrast to

U-Net and other models like FCN and SegNet,

DoubleU-Net's computational speed is notably

slower. This means that while DoubleU-Net excels

in accuracy and segmentation quality, it may not be

the ideal choice in scenarios where real-time or

near-real-time processing is a critical factor, as its

computational demands are more substantial due to

its intricate architecture.

In Table 2, we delve into a detailed experiment

to compare the output of the two subnetworks in

DoubleU-Net, when every network can be

considered as an U-Net model. We can observe that

the output from Network 2 is more accurate than the

output from Network 1, which confirms the

preeminence of DoubleU-Net in the Tab 1 when

developed from a single U-Net network. This

all-encompassing approach allows us to draw robust

and well-founded conclusions regarding the

Methods DSC IoU Recall Precision Time (ms)

FCN 90.2% 82.2% 77.3% 90.0% 25.4

SegNet 90.0% 81.9% 89.1% 88.9% 20.1

U-Net 89.5% 81.5% 78.7% 92.2% 16.6

DoubleU-net 91.3% 84.0% 86.6% 94.5% 29.3

Table 1. Quanlitative results on Data Science Bowl 2018 dataset (The bests are in bold)

DoubleU-Net DSC IoU Recall Precision

Output 1 90.4% 82.6% 82.0% 91.1%

Output 2 91.3% 84.0% 86.6% 94.5%

Table 2. Qualitative results of Output 1 and Output 2 in the DoubleU-Net architecture.

Methods FCN SegNet U-Net DoubleU-net

Dice loss 86.5% 85.9% 84.1% 88.3%

BCE loss 90.0% 89.6% 88.9% 91.0%

Our 90.2% 90.0% 89.5% 91.3%

Table 3. Comparison between different loss functions. (DSC score)
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DoubleU-Net's capability to handle nuclei image

segmentation tasks, helping to improve model

performance and provide more accurate predictions.

In Table 3, we showcase the results achieved

through the fusion of the Binary Cross-Entropy Loss

and Dice Loss functions, resulting in improved

model performance. Through a thorough analysis of

the enhancements observed in each model, we can

make informed conclusions regarding the

appropriateness and effectiveness of the selected loss

function. It's worth noting that the BCE loss

function utilized in the study by Jha et al.[21] may

encounter challenges related to sigmoid saturation,

wherein the model's output reaches extreme values

close to 0 or 1. Consequently, the incorporation of

the Dice loss serves as a countermeasure to alleviate

this effect. The results are shown in Table 3.

To provide better evidence of higher performance,

we create visual representations of segmented results

produced by the aforementioned models in Fig 7.

Upon careful scrutiny of this figure, it becomes

apparent that the segmentation masks generated by

DoubleU-Net display the closest resemblance and

alignment with the ground truth annotations. In other

words, when comparing the model's output to the

actual reference data, DoubleU-Net consistently

demonstrates a superior ability to accurately identify

and delineate the nuclei in the images. This visual

evidence further reinforces the notion that

Fig. 7. Quantitative segmentation results by state of the arts neural networks on the DSB2018 dataset
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DoubleU-Net outperforms other models in terms of

segmentation quality and precision.

Ⅳ. Conclusion

In this study, we have explored the feasibility of

utilizing deep learning-based methods for the

segmentation of nuclei images. We conducted

experiments using several state-of-the-art models on

the Data Science Bowl 2018 dataset. Our results and

evaluations revealed that the DoubleU-Net model

achieved superior segmentation performance when

compared to other state-of-the-art alternatives.

Looking ahead, our future research will be directed

towards reducing the training time or enhancing the

accuracy of the DoubleU-Net for nuclei image

segmentation, as well as extending its application to

other segmentation tasks.

Additional strategies to enhance the approach's

performance may involve considering alternatives

like switching to a different pre-trained encoder,

adopting a more contemporary neural network

architecture, or seeking out an improved loss

function.
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